

2004 SIP Summit

Passenger Vehicles

January 13, 2004

Outline

- Background
- Existing measures
- Emission inventory
- SIP strategies
- Other possible measures

Statewide Emission Sources ROG Emissions -2010

Statewide Emission Sources NOx Emissions - 2010

2300 tons per day

What is a "Passenger Vehicle"?

- Vehicles below 8,500 lbs. gross vehicle weight (GVW)
 - -automobiles
 - -light trucks, SUVs, minivans

Existing Emissions Controls

- Low-Emission Vehicle (LEV) program
 - LEV I and LEV II
- Zero-Emission Vehicle (ZEV) Program
 - Partial Zero-Emission Vehicles (PZEVs),
 Advanced Technology-PZEVs (AT-PZEVs), ZEVs
- On-Board Diagnostics (OBD II)
- Smog Check
- Motorcycle emission standards
- Cleaner gasoline

The Vehicle Fleet

- Pre 1980
 - 2-way oxidation catalyst (HC/CO)
- 1980 1993
 - 3-way catalyst (HC/CO/NOx)
 - O₂ sensor, on-board computer, fuel injection
- LEV I 1994-2003
 - OBD II, refined catalysts & electronic controls
- LEV II 2004-2010
 - advanced light-off catalysts, precision fuel control

How Important Are Older Cars?

(statewide emissions - 2010)

How Important Are Gross Emitters?

 Approximately one third of statewide HC emissions in 2010 are excess emissions from vehicles emitting above the standard.

HC Excess Emissions Statewide - 2010

How Important Are Evaporative Emissions?

Calendar Year

Are SUVs the Problem?

- Traditionally met higher standards
- Contribution will diminish since SUVs and large trucks must meet passenger car standards by 2007
- Will continue to emit higher CO₂

VMT Growth is Important

- 2010
 - VMT increases by 12%
 - Emissions decrease by 36%
- 2020
 - VMT increases by 30%
 - Emissions decrease by 67%

Summary

- New cars in 2010 will be extremely clean
- Advancing introduction of new emission control technology is unlikely by 2010
- Old cars are still a significant contributor to air pollution in 2010

SIP Strategies

Identified SIP Measures In-Use Vehicles

- Parts replacement program
- Improve Smog Check

Emission Component Replacement Program for Light-Duty Vehicles

Emission Control Component Replacement

- Question: Can replacement of critical emission controls on older cars reduce emissions?
- Critical emission controls
 - -Catalytic converter, O2 sensor
 - Evaporative canister, hoses

The Vehicle Fleet

- Pre 1980
 - 2-way oxidation catalyst (HC/CO)
- 1980 1993
 - 3-way catalyst (HC/CO/NOx)
 - O₂ sensor, on-board computer, fuel injection
- LEV I 1994-2003
 - OBD II, refined catalysts & electronic controls
- LEV II 2004-2010
 - advanced light-off catalysts, precision fuel control

Component Replacement Test Program

- ARB invested considerable effort in test program
 - recently completed at ARB test facility
- Vehicle pass I/M before component replacement
 - repaired within I/M cost limits if necessary
- 1980-1994 MY vehicles tested
 - random selection
 - O₂ sensor and catalyst replacement 38 vehicles
 - canister replacement 34 vehicles

Component Replacement Initial Emission Reductions

- O2 Sensor
 - HC 7%, CO 8%, NOx 10%
- Catalyst
 - aftermarket
 - HC 33%, CO 34%, NOx 35%
 - aftermarket OBD II compliant (3 vehs)
 - HC 68%, CO 60%, NOx 35%
 - OEM
 - HC 60%, CO 56%, NOx 65%
- Evaporative Canister
 - diurnal 30%, hot soak 10%

Component Replacement Recaptured Emission Reductions

- Average mileage accumulated ~7,000
- Initial benefits from aftermarket catalysts reduced substantially
- OEM catalysts performed better

Component Replacement Cost (includes labor)

- O2 Sensor
 - \$57-183
- Catalyst
 - aftermarket \$127-355
 - OBD II aftermarket between regular aftermarket and OEM
 - OEM \$327-1,089
- Evaporative Canister
 - \$110-370

Component Replacement Benefit - 2010

- South Coast
 - ROG 0-19 tpd
 - NOx 0-18 tpd
- San Joaquin Valley
 - ROG 0-2.4 tpd
 - NOx 0-2.7 tpd

Summary

- Component replacement program can further reduce in-use emissions in 2010 if it can be implemented.
- Testing to evaluate effectiveness of aftermarket OBD II compliant catalysts ongoing

Other Possible Strategies

- Light-duty scrap
- Additional Smog Check improvements

Light-Duty Scrap

What Is Scrap?

- Accelerates voluntary retirement of older, higher-emitting cars
- Speeds up turnover to more modern, durable emission control equipment

Does Scrap Clean The Air?

Yes

But there are issues:

- Funding
- Emission benefits
- Replacement transportation
- Car collector concerns

Light-Duty Scrap Programs Issues

Funding

- Dependable source of funding needed to enable large-scale program
- Current programs funded by local air districts
- Emission benefits
 - Must make assumptions about emission rate and remaining vehicle life

Light-Duty Scrap Programs

Issues (continued)

- Replacement transportation
 - Need to ensure mobility for motorists who scrap their cars
 - Importation of cars from other states negates benefit
- Car collector concerns
 - Must preserve car collector ability to obtain valuable cars and car parts

Future Scrap Programs

- \$500 million program can generate 15-20 tons per day of ROG+NOx reductions
 - Equivalent to retiring 10% to 15% of pre-1996 vehicles over life of the program
 - Assumes pre-1996 vehicles are replaced with fleet average vehicle

Smog Check

What Is Smog Check?

- Ensures cars stay clean as they age
- Requires biennial inspection for vehicles between 4 and 30 years old
- Applies to cars, pick-up trucks, SUVs, and gasoline-powered delivery vehicles
- Provides 370 tpd of ROG+NOx reductions statewide

Older Cars Emit More Pollution

ASM Emission Failure Rates by Model Year 12 Month Average (May 2002-April 2003)

Smog Check Potential Improvements

- Eliminate 30-year rolling exemption
 - -Freeze exemption at pre-1975 vehicles
 - -6 TPD of ROG+NOx benefits in 2010
- Annual testing of older vehicles
 - Failure rates of 15 year and older vehicles are two to three times the fleet average
 - -25 TPD of ROG+NOx benefits in 2010

Smog Check

Potential Improvements (continued)

- Annual testing of high mileage vehicles
 - Taxicab testing showed high failure rates
 - Up to 3% of cars driven >25K miles/year
 - up to 20 TPD of ROG+NOx benefits in 2010

Smog Check

Potential Improvements (continued)

- More stringent cutpoints for after repair tests
 - Roadside data indicates repairs are not as durable as they should be
 - Setting more stringent post-repair cutpoints could encourage vehicles to be fully repaired
 - Emission benefits depend upon post-repair cutpoints

Smog Check Potential Improvements

- Require dynamometer testing for all-wheel drive vehicles
- Add motorcycles and/or diesel vehicles

Smog Check Potential Improvements

- Incorporate remote sensing
 - Promising way to identify very dirty and clean cars
 - Pilot program to assess how best to supplement Smog Check program
 - Need to resolve technical concerns

Summary Passenger Vehicles

- New passenger vehicles emit extremely low levels of pollution
- Reducing emissions from in-use vehicles is key:
 - -Parts replacement is promising
 - Large-scale scrap program requires funding
 - Smog Check improvements can increase emission benefits